Enhancing the Interpretability of Terahertz Data through Unsupervised Classification

نویسندگان

  • Henrike Stephani
  • Michael Herrmann
  • Karin Wiesauer
  • Stefan Katletz
  • Bettina Heise
چکیده

− We present the applicability of hierarchical agglomerative cluster algorithms to terahertz (THz) spectroscopic analysis. We show the influence of different windowing and filtering methods in the spectral data preprocessing to enhance the clustering results. Two distance measures are compared. Classical Euclidean distance on the full frequency range and a distance working only on the minima of the spectra. We further show the adaptability of our clustering methods for THz hyper-spectral image classification and visualization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Investigating the Impact of Unsupervised Feature-Extraction from Multi-Wavelength Image Data for Photometric Classification of Stars, Galaxies and QSOs

Accurate classification of astronomical objects currently relies on spectroscopic data. Acquiring this data is time-consuming and expensive compared to photometric data. Hence, improving the accuracy of photometric classification could lead to far better coverage and faster classification pipelines. This paper investigates the benefit of using unsupervised feature-extraction from multi-waveleng...

متن کامل

Support Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran

Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...

متن کامل

Wavelet-Based Dimensionality Reduction for Hyperspectral THz Imaging

With terahertz time-domain spectroscopy, hyperspectral images can be acquired where each pixel contains a full spectrum of the range of several terahertz (THz). An enormous amount of data is generated. Therefore, advanced methods for automated data analysis and image processing are required. We present a wavelet-based approach for channel reduction and feature selection for a subsequent cluster...

متن کامل

Interpreting Finite Automata for Sequential Data

Automaton models are often seen as interpretable models. Interpretability itself is not well defined: it remains unclear what interpretability means without first explicitly specifying objectives or desired attributes. In this paper, we identify the key properties used to interpret automata and propose a modification of a state-merging approach to learn variants of finite state automata. We app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009